Finding Regions for Local Repair in Partial Constraint Satisfaction

Harald Meyer auf’m Hofe

German Research Center for Artificial Intelligence
Postfach 2080
D-67608 Kaiserslautern, Germany

Abstract. Yet, two classes of algorithms have been used in partial constraint satisfaction: local search methods and branch&bound search extended by the classical constraint-processing techniques like e.g. forward checking and backmarking. Both classes exhibit characteristic advantages and drawbacks. This article presents a novel approach for solving partial constraint satisfaction problems exhaustively that combines advantages of local search and extended branch&bound algorithms. This method relies on repair based search and a generic method for an exhaustive enumeration of repair steps.

1 Introduction

Algorithms for solving constraint satisfaction problems (CSP) have been successfully applied to several fields including scheduling, design, and planning. Extending the standard CSP by a representation of constraint importance led to the class of partial constraint satisfaction problems (PCSP) [2] which provides new opportunities for solving several problems of combinatorial optimization more efficiently. A PCSP is the task of labeling each variable of a given variable set with a value of a certain domain. Constraints of an explicitly represented importance state restrictions on combinations of some variables’ labels. The solution of a PCSP is a labeling complying with as important constraints as possible.

Yet, two classes of algorithms have been applied to partial constraint satisfaction: local search methods [9] and systematic branch&bound search extended by classical constraint-processing techniques like forward checking and backmarking [2,4,7]. Both paradigms exhibit characteristic advantages and drawbacks. Theoretically, the branch&bound algorithm is guaranteed to terminate with an optimal solution. However, tree search algorithms retract early decisions only after searching large portions of the search space exhaustively. As a consequence, minor differences in the constraint problem can result in a completely different run time behavior — especially if the number of variables is larger. In contrast, local search procedures try to improve a labeling without respecting a certain systematic in search. Thus, they are applicable to dynamic constraint problems, where variables and constraints are added resp. removed. However, the computed result is of a questionable quality. Proving the optimality of a result is
not possible by use of local search algorithms. Local minima are processed by heuristics which either make use of noise strategies (mincon-walk and mincon-
retry [12]), exploit information on the search history (e.g., tabu search [3]), or change more than one variable at each step of repair (e.g., EFLOP-heuristics
[13] or the le-algorithm [11]).

This paper presents a novel approach for solving partial constraint satisfaction
problems that combines the advantages of local search and tree search
algorithms. This approach is based on iterative improvement of an initially
chosen labeling repeating the following steps: A region (a set of variables) in the
constraint problem is chosen by an exhaustive enumeration strategy. Then, an
extended branch&bound is used to optimize the labels in this region. This method
organizes the search space flexibly like local search algorithms, i.e. the algorithm
is able to change any assignment at any time if this promises to lead to an
improvement in the quality of the labeling. Generally, iterative improvement
algorithms have to be tailored to the application. Exhaustive enumeration of
regions for local repair turns iterative improvement into a generic algorithm and
provides the ability to prove optimality of a solution.

The paper is organized as follows: After providing some basic definitions on
partial constraint satisfaction, the second section describes iterative improve-
ment algorithms. A section on exhaustive enumeration of iterative repair steps
follows, which starts with a small theory on enumerating improvement steps and
ends with an enumeration algorithm. Then, first empirical results are presented
in order to prove the relevance of the approach. A concluding section sums up
the results.

2 Partial Constraint Satisfaction

In order to clarify notations, which are especially required in section 4, some
basic definitions are given here.

Definition 1. A CSP is a tuple (V, D, C) where V is a set of variables, the
domain D is a set of values which can be assigned to the variables, and C is a
set of constraints, where each $c \in C$ is defined by: $V(c) \subseteq V$ is a set of variables
which are directly affected by c. The extension of c, $\text{ext}(c)$, is a set of labelings
of all variables in $V(c)$ with values of D which comply with c.

$$l \downarrow_{V'} = \{v_i \leftarrow d_i \in l \mid v_i \in V\}$$

denotes the selection of labels which concern the variables in V'. A labeling l
complies with a constraint c iff $l \downarrow_{V(c)} \in \text{ext}(c)$.

$$C(l) = \{c \in C \mid l \downarrow_{V(c)} \notin \text{ext}(c)\}$$

denotes the set of constraints being violated by l. A labeling l of all variables in V
is a solution of CSP $=(V, D, C)$ iff

$$l \in \text{ext}(C) \iff \forall c \in C : l \downarrow_{V(c)} \in \text{ext}(c)$$
\[\iff \mathcal{C}(l) = \{ \} \]
\[\iff l \in \mathcal{C} \in C \text{ ext}(c). \]

Hence, a solution of a CSP is a labeling of all variables which complies with all constraints.

In partial constraint satisfaction\(^1\), the relative importance of constraints is given by a partial ordering among constraint sets where \(C' \succ C'' \) means intuitively: The constraints in \(C' \) are more important than the constraints in \(C'' \). The solution of a PCSP satisfies as important constraints as possible.

Definition 2. A PCSP \((V, D, C, \succ) \) extends a CSP \((V, D, C) \) by a preference ordering \(\succ \), which is a partial ordering among subsets of \(C \). A labeling \(l \) of all variables in \(V \) is a solution of a PCSP iff there is no labeling \(l' \neq l \) with \(\mathcal{C}(l) \succ \mathcal{C}(l') \).

This notion of PCSPs forms the domain of the *enumerating global revisions method*. The well known algorithms for solving PCSPs like the *branch&bound* [2] as well as *mincon* [9] and *mincon-walk* [12] can be adopted easily to these definitions [6].

3 Iterative Improvement

Fig. 1 presents a scheme for searching by *iterative improvement* which forms the basis for our novel approach. A labeling \(l \) of all variables is modified iteratively repeating the improvement step within the rows 2 to 5. This method may be considered as a generalization of the *mincon* algorithm [9] where, in contrast to *mincon*, local minima are passed conducting more than one change in the current labeling \(l \) within a single step of repair.

Therefore, a procedure *choose-bad-region* is used to determine a set of variables whose labels will be changed in the following improvement step (row 2). The constraint graph of the problem, the domains of the variables\(^2\), the current labeling, and the set of violated constraints are useful parameters of this procedure. In practical applications of such algorithms, e.g., in our commercial nurse scheduling system [8, 5], *choose-bad-region* is tailored to the current application. In contrast, this paper introduces a generic algorithm for this procedure.

Then, the improvement step is conducted by a variant of the *branch&bound* in row 4 that changes the labels of the variables \(V' \) in labeling \(l \) to improve the overall quality of \(l \). The current set of violated constraints is used as initial bound because the new labeling \(l \) (after the improvement step) is not allowed to be worse than the old one (before the improvement step). Constraint propagation like *forward checking* can be employed in order to increase performance of the improvement step.

1 In the sense of this paper.

2 These domains can be the result of an initial arc-consistent filtering that has been conducted before search.
\[\text{iterative-improvement}(V, D, C, \succ) \]

1. Compute an initial labeling \(l \) of all variables in \(V \);
2. \(V' = \text{choose-bad-region}(V, C, \succ, l, C(l)) \);
3. if \(V' = \emptyset \) then go to 7;
4. unassign the variables in \(V' \), propagate all constraints \(c \) with \(V(c) \cap V' \neq \emptyset \) and run branch&bound on the variables in \(V' \) with \(C(l) \) as initial bound in order to compute a new labeling \(l \);
5. add temporary hard constraint

\[
\bigwedge_{v \in V \setminus V'} v \neq l_d
\]

6. go to 2;
7. remove temporary constraints. return \(l \) as result.

\[\text{Fig. 1. Searching by iterative improvement.} \]

\textit{Branch\&bound} searches all possible labelings of \(V' \) exhaustively. Consequently, further improvement steps have to consider a change in \(V \setminus V' \) in order to prevent the search algorithm from visiting labelings more than once. This condition is enforced in row 5 by an additional temporary compulsory constraint.

As all local search algorithms, \textit{iterative improvement} is applicable to dynamic constraint satisfaction problems (DCSP), where constraints and variables are added to or removed from the current constraint problem between two calls of the search procedure. Applications of dynamic constraint satisfaction usually require consecutive search processes on related problems to result in similar solutions which share as many labels as possible. This notion of stability is provided for free by local search algorithms like \textit{iterative improvement} that accept only an improvement of current labeling as valid repair steps.

This algorithm — enhanced by an heuristic \textit{choose-bad-region} procedure — does a pretty good job, e.g. on nurse scheduling problems, where \textit{minconf_walk} as well as EFLOP-like heuristics failed at producing solutions of sufficient quality \cite{8,5}. Nevertheless, applying heuristics to the selection of bad regions in partial solutions of a PCSP exhibits some remarkable drawbacks. Firstly, the applied heuristics consider only a few constraints when choosing variables for reselection. Secondly, the heuristics heavily rely on assertions on the constraint model which makes the adoption of the system to slightly different applications a non-trivial problem. These deficiencies motivated to investigate opportunities for deriving similar heuristics directly from the constraint model.

4 Exhaustive Enumeration of Improvement Steps

A naive method for avoiding the application of search heuristics in \textit{iterative improvement} would enumerate all possible regions by the \textit{choose-bad-region} procedure called in \textit{iterative-improvement} (cf. Fig. 1). When called by the
Fig. 2. Local revision sets form constraints on possible revisions of the whole problem with reference to the current labeling S.

overall search algorithm, this procedure first returns all sets of only one variable. If all of these variable sets have been enumerated, then all sets of two variables are returned and so on. Finally, after trying to improve $V' = V$, one knows that a global solution has been computed. However, this method neglects all information that can be retrieved from the constraint graph and the deficiencies of the current solution.

Our idea about a generic procedure for finding bad regions in partial solutions of a PCSP is to constrain this naive enumeration of regions for solution improvement by the available information. In the following, promising regions for solution improvement are called to form global revision sets. The problem of finding global revisions is formulated as a Boolean PCSP whose constraint graph is very similar to the original problem (cf. Fig. 2). If a solution of the Boolean problem assigns a 1 to a variable v'_i, the corresponding variable v_i in the original problem is considered to be a part of a promising region for improvement. Each of the constraints c'_{ij} in this Boolean problem represents a necessary condition on promising regions that only depends on one constraint c_{ij} in the original problem and a partial solution S. In the following, the regions complying with the condition concerning a single constraint are called to define a set of local revisions. The constraints $atmost$ and $atleast$ are well known from scheduling systems and count here the occurrences of 1 in the solution of the binary problem. These constraints can be used to control the size of the regions. Hence, it is possible to return small regions first in order to conduct cheap improvement steps first.

4.1 Local Revision Sets

Firstly, the relation of the original problem to the abstract problem of finding regions for local repair according to Fig. 2 needs to be defined. In the following, v' always denotes the variable in the abstract Boolean problem that corresponds to variable v in the original problem. Analogously, c' represents the constraint in the abstract problem referring to constraint c in the original problem. The whole
set of variables in the abstract problem is written as \(V_{rev} \), the set of constraints as \(C_{rev} \).

Definition 3. Let \(l_1 \) and \(l_2 \) be labelings of all variables in \(V \). Then \(\text{diff}(l_1, l_2) \) returns a labeling of \(V_{rev} \) such that

\[
\forall v' \in V_{rev} : \text{diff}(l_1, l_2)_{v'} = \begin{cases} 0 & \text{iff } l_1_{v'} = l_2_{v'} \\ 1 & \text{otherwise.} \end{cases}
\]

Let \(l \) be a labeling of the variables in \(V \) and \(c \) be a constraint in the original problem. Then, the smallest local revision set of \(l \) respecting \(c \) is defined as follows:

\[
\text{rev}(c, l) := \bigcup_{l' \in \text{ext}(c)} \{ \text{diff}(l_{\downarrow V(c)}, l') \}.
\]

All extensions comprising \(\text{rev}(c, l) \) are called local revision sets of \(l \) respecting \(c \).

Local revision sets cover all differences of a current labeling \(l \) from all labelings complying with constraint \(c \). Although defined extensionally here, intensional definitions for common constraints, which are typically defined by propagation methods in a constraint library, are possible.

4.2 Global Revision Sets

Global revision sets consider all opportunities to satisfy a set of constraints instead of single constraints.

Definition 4. The smallest revision set of a partial solution \(l \) respecting constraint set \(C' \) is defined as

\[
\text{rev}(C', l) := \bigcup_{l' \in \text{ext}(C')} \{ \text{diff}(l_{\downarrow V (c)}, l') \}.
\]

All extensions comprising \(\text{rev}(C', l) \) are called revision sets of \(l \) respecting \(C' \). Revision sets respecting all constraints in \(C \) are called global revision sets.

Lemma 1.

\[\forall_{c \in C'} \text{rev}(c, l) \supseteq \text{rev}(C', l). \]

Obviously, the join of local revisions above denotes exactly the set of all solutions to the abstract problem in Fig. 2. Hence, the lemma claims that the solutions of this abstract constraint problem form a global revision set of labeling \(l \). However, this global revision set is generally not minimal.

Proof. One can prove by a few equations that for any \(l' \in \text{ext}(C') \) the difference from the current label \(\text{diff}(l', l) \) is in \(\forall_{c \in C'} \text{rev}(c, l) \) presupposing that all variables in \(l \) are directly affected by a constraint in \(C' \):

\[
\forall_{c \in C'} \text{rev}(c, l) \\
= \forall_{c \in C'} (\{ \text{diff}(l'_{\downarrow V(c)}, l_{\downarrow V(c)}) \} \cup \text{rev}(c, l)) \\
= \{ \text{diff}(l', l) \} \cup \forall_{c \in C'} \text{rev}(c, l).
\]
The first equation follows from the definition of local revision sets. The second presupposes that all variables in \(V \) are directly affected by the constraints in \(C' \) and
\[
\text{diff}(l', l_{\downarrow V(c)}') \in \text{rev}(c, l).
\]

\[\Box\]

Proposition 1.
\[
\forall c \in C \quad \text{rev}(c, l) \supseteq \text{rev}(C', l)
\]

holds true for all most important constraint sets \(C' \subseteq C \) in a PCSP which can be satisfied.

Proposition 1 claims in other words that each globally optimal solution can be reached changing the regions as indicated by the global revision sets.

Proof. The inclusion \(\forall c \in C \quad \text{rev}(c, l) \supseteq \text{rev}(C, l) \) follows from the lemma.
\[
C \supseteq C' \implies \text{rev}(C, l) \supseteq \text{rev}(C', l)
\]

is implied by definition 4.

\[\Box\]

4.3 Searching Global Revisions

The basic idea for applying these results is to search the original problem by algorithm **iterative-improvement** (according to Fig. 1) controlled by an exhaustive search of the abstract problem that enumerates global revisions. The resulting hybrid algorithm still is an anytime-algorithm because partial solutions are available all the time. Additionally, proving optimality is possible due to the results of the previous section. If all global revisions have been searched without improving the current partial solution \(l \), then \(l \) is optimal. Fig. 3 describes the idea of an enumeration algorithm for partial constraint satisfaction problems. \(PCSP_{\text{rev}} \) holds the constraint problem for finding global revisions. As mentioned above, **atmost** and **atleast** constraints are used to enumerate global revisions according to their size in order to conduct cheap improvement steps first in algorithm **iterative-improvement**. The variable \(n \), occurring in the rows 1 and 5, controls the number of assignments to be retracted. In row 1, \(PCSP_{\text{rev}} \) is built up again after improving \(l \) because the constraints in \(C_{\text{rev}} \) typically depend on \(l \). Variable \(\delta_{\text{rev}} \), which is set in row 2, serves as an initial bound in the following call of the **branch\&bound** procedure. Only revisions promising to improve \(l \) are returned by the enumeration in row 4. If the **branch\&bound** fails to find a new partial solution of \(PCSP_{\text{rev}} \) better than \(\delta_{\text{rev}} \) then, occasionally, larger revisions are required (row 5). If no larger revisions are available then \(l \) is optimal. Search in **iterative-improvement** terminates because **choose-bad-region** returns an empty variable set.

Enumerating regions ordered by their size is only one example for an enumeration strategy. There are many alternative strategies conceivable which for instance may try to find revisions first that promise to repair the most important currently violated constraints [6]. Additionally, the degree of prospective constraint processing, which is used searching the abstract problem by
choose-bad-region(V, C, ρ, l, δ)

1. if PCSPrev has no value (this function is called for the first
time) or δ has been improved by the last improvement step in
iterative-improvement then begin
 (a) PCSPrevev := (Vrev, {0, 1}, Crev, ρ′) with Crev = \bigcup_{c \in C} rev(c, l) and
 C_1 \supset C_2 \iff \{ c | c' \in C_1 \} \supset \{ c | c' \in C_2 \};
 (b) n := 1;
 (c) add the following constraint to PCSPrevev:
 at least and at most n occurrences of 1
 end;
2. δrev := \bigcup_{c \in \tilde{G}} rev(c, l);
3. call branch&bound with δrev as bound on PCSPrevev for the next partial
 solution better than δrev;
4. if a partial solution l has been found return V' = \{ v | l \downarrow_v = 1 \} and
 exit;
5. if no partial solution is available and n ≤ | V | then do begin
 (a) n := n + 1;
 (b) reset PCSPrevev and remove at least and at most constraints;
 (c) add the following constraints to PCSPrevev: at least and at most n
 occurrences of 1;
 (d) goto row 3
 end;
6. l is optimal. Hence, return V' = {} and exit.

Fig. 3. Enumerating global revisions (egr).

branch&bound, is obviously relevant for the performance of the enumeration.
If the branch&bound looks ahead deeply into the search space, it will find that
global revisions first which promise to repair strong deficiencies. However, the
overhead for searching global revisions is increased.

5 Experiences

Enumeration of global revisions (egr) comprises a whole family of algorithms
where instances differ in the used enumeration strategy and the applied con-
straint techniques. The major drawback of this method is the overhead which is
carried by the effort of searching the abstract constraint problem. Experiments
on unstructured randomly generated constraint problems are presented here to
give a first answer to the question: Is the effort of enumerating global revisions
acceptable?

A comparative analysis of egr has to consider the two major tasks in partial
constraint satisfaction: finding optimal solutions (exhaustive search) and finding
as good solutions as possible within a limited amount of time (approximative
optimization).
Table 1. Empirical comparison of \textit{bb+FC} and \textit{enumerating global revisions (egr)} searching exhaustively. Each row presents results of 10 runs on random problems for each algorithm.

<table>
<thead>
<tr>
<th>no</th>
<th>den</th>
<th>sat.</th>
<th>algo.</th>
<th>time/s</th>
<th>checks/10^6</th>
<th>assignments/10^3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(</td>
<td>0 min.</td>
<td>max</td>
<td>(</td>
</tr>
<tr>
<td>30 variables, domains of 10 values, 6 hierarchy levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.44</td>
<td>0.7</td>
<td>egr+FC</td>
<td>5282</td>
<td>1744</td>
<td>24083</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>egr+MACall</td>
<td>4019</td>
<td>704</td>
<td>11777</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bb+FC</td>
<td>4348</td>
<td>28</td>
<td>12785</td>
</tr>
<tr>
<td>2</td>
<td>0.44</td>
<td>0.5</td>
<td>egr+FC</td>
<td>7002</td>
<td>396</td>
<td>15926</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>egr+MACall</td>
<td>7022</td>
<td>854</td>
<td>21397</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bb+FC</td>
<td>10537</td>
<td>267</td>
<td>31590</td>
</tr>
<tr>
<td>3</td>
<td>0.22</td>
<td>0.5</td>
<td>egr+FC</td>
<td>824</td>
<td>92</td>
<td>3169</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>egr+MACall</td>
<td>755</td>
<td>208</td>
<td>2522</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bb+FC</td>
<td>1047</td>
<td>517</td>
<td>2294</td>
</tr>
</tbody>
</table>

In the following, variants of egr are compared to standard algorithms due to experiments on \textit{hierarchical constraint satisfaction problems (HCSP)}. An HCSP is simply a special kind of a PCSP where constraints are grouped into the hierarchy levels C_0 (comprising compulsory constraints) to C_n [1, 5, 6]. Additionally, $\omega(c)$ assigns a real number as a constraint weight to each constraint c. To decide whether $C' \succ C''$ holds for the constraint sets C' and C'', one considers the weight sum of the constraints in $C' \cap C_1$ and $C'' \cap C_1$ first. If C' has got more important constraints in hierarchy level 1 then $C' \succ C''$ holds. If C' comprises less important constraints in level 1 then the opposite holds. Otherwise, the next hierarchy level is concerned. Hierarchy levels may be considered as a categorical degree of a constraint’s importance whereas the weight is a gradual measure of importance. HCSPs turned out to be useful for representing real world problems [8, 5] and, additionally, enable the use of certain \textit{looking ahead} techniques and \textit{dynamic variable orderings (DVO)} [6, 7]. As usual, constraint problems are classified according to the number of variables, constraint density (den.) and the constraint’s satisfiability (sat.).

\textit{Exhaustive search:} Table 1 presents empirical results on two variants of egr in comparison with the \textit{branch&bound} algorithm \textit{bb+FC}. Algorithm \textit{bb+FC} uses \textit{forward checking} equivalently to the P-FC3 procedure in [2] combined with a dynamic variable ordering heuristic, which is especially appropriate to constraint hierarchies [6, 7]. Forward checking results are used to assign best values first as value assignment strategy. Both egr procedures, egr+FC and egr+MACall, deploy \textit{bb+FC} within the improvement step. Whereas, egr+FC also uses \textit{bb+FC} searching the abstract problem, egr+MACall additionally applies a MAX-MIN-algorithm [10] after each assignment in the abstract problem which labels each value with the most important hierarchy level that cannot be satisfied completely assigning that value. The results of constraint propagation are used to inform the
value selection strategy and the dynamic variable ordering heuristic (for details refer to [6]). This method has been included into the experiments to assess the effect of a larger amount of constraint propagation in the abstract problem which presumably increases the merit of the returned regions but causes additional costs in searching the abstraction.

Additional experiments, which are not listed in Fig. 1, turned out that egr algorithms are usually not recommended when searching smaller optimization problems comprising 20 variables. On problems of about 30 variables, egr algorithms are competitive to bb+FC. Apparently, spending more effort on looking ahead while searching for promising global revisions like in egr+MACall pays for itself when searching for optimal solutions of problems of this size.

Fig. 4 shows the major advantage that egr methods had in all experiments we have conducted. Solutions are improved more quickly. Fig. 4 displays the improvement in solution quality (y-axis) over time (x-axis). Therefore, the constraint hierarchy is transformed into an equivalent system of weighted constraints. A point (x,y) in a curve of Fig. 4 reports that constraints of weight y have been violated by the best yet found labeling at time x. Very similar curves result from the other experiments.

Approximative optimization: Approximative optimization of unstructured randomly generated problems is the domain of mincon-retry and mincon-walk. Fig. 5 presents the performance of egr+FC in comparison with bb+FC, mincon-retry, and mincon-walk. Forward checking results have been used to improve the initial labeling of local search algorithms in order to provide the same starting point as used in the egr algorithms.

Diagrams a) and b) in Fig. 5 show results on problems comprising 40 variables with a time limit of 5 minutes for each experiment. The diagrams c) and d) report the performance on larger problems comprising 100 variables with a time limit of 15 minutes for each experiment.

Obviously, egr behaves similar to mincon-retry and mincon-walk. The best yet found labeling is improved continuously without necessity to respect a certain systematic in search. Although searching two constraint problems instead of one, egr is more or less as fast as the standard algorithms in local search. However,

A more detailed report on experiments of this kind can be found in [6].
on unstructured problems mincon-retry and mincon-walk perform often better than egr.

6 Summary

This paper introduced a novel method for turning repair-based search of partial constraint satisfaction problems into an exhaustive search procedure obtaining the advantages of local search: flexible improvement of the best yet found labeling and applicability to dynamic constraint satisfaction. This method, named enumeration of global revisions (egr), relies on an enumeration of promising repair steps which is informed only by information which follows straightforward from the given constraint problem. First empirical evaluation on unstructured randomly generated constraint problems proves a general applicability of this method to both, exhaustive search of larger problems comprising about 30 variables and approximative optimization of even larger problems.

Further research aims at verifying this promise by practical application of egr to real world problems. Therefore, the major drawback of this method has to be attacked: the large implementation effort. For each constraint, which is used in the target application, a Boolean abstraction has to be implemented, which restricts the enumeration of revisions. As soon as constraint libraries of
the required expressiveness exist, egr will have to prove its applicability in time
tabling and knowledge-based configuration.

References

2. Eugene C. Freuder and Rick J. Wallace. Partial constraint satisfaction. Artificial
Intelligence, 58:21–70, 1992.
3. Philippe Galinier and Jin-Kao Hao. Tabu search for maximal constraint satisfac-
tion problems. In CP–97: Proceedings of the Third International Conference on
Principles and Practice of Constraint Processing, volume 1330 of LNCS. Springer
meets Application. Dissertation, Universität Kaiserslautern, Infix Verlag, Sankt
5. Harald Meyer auf’m Hofe. ConPlan/ SIEADplan: Personnel assignment as a prob-
lem of hierarchical constraint satisfaction. In PACT-97: Proceedings of the Third
International Conference on the Practical Application of Constraint Technology,
6. Harald Meyer auf’m Hofe. Finding regions for local repair in hierarchical con-
straint satisfaction. Research Report RR-97-05, Deutsches Forschungszentrum für
Künstliche Intelligenz, December 1997.
7. Harald Meyer auf’m Hofe and Andreas Abecker. Zur Verarbeitung “weicher”
8. Harald Meyer auf’m Hofe and Enno Tolzmann. ConPlan/ SIEADplan: Person-
alessatzplanung als Constraintproblem. KI – Künstliche Intelligenz, (1):37–40,
1997.
9. Steven Minton, Mark Johnston, Andrew Philips, and Philip Laird. Minimizing con-
flicts: a heuristic repair method for constraint satisfaction problem and scheduling
approximate constraint satisfaction with a maximin criterion. In Proc. of the 6th
biennial conf. of the canadian society for comput. studies of intelligence, pages 227–
230, May 1990.
11. G. Vefailie and T. Schiex. Solution reuse in dynamic constraint satisfac-
12. Richard J. Wallace. Analysis of heuristic methods for partial constraint satisfac-
Principles and Practice of Constraint Processing, volume 1118 of LNCS. Springer
Verlag, pages 482–496, 1996.
13. N. Yugami, Y. Ohta, and H. Hara. Improving repair-based constraint satisfac-